The image of the Gauss map of any oriented isoparametric hypersurface of theunit standard sphere $S^{n+1}(1)$ is a minimal Lagrangian submanifold in thecomplex hyperquadric $Q_n({\mathbf C})$. In this paper we show that the Gaussimage of a compact oriented isoparametric hypersurface with $g$ distinctconstant principal curvatures in $S^{n+1}(1)$ is a compact monotone and cyclicembedded Lagrangian submanifold with minimal Maslov number $2n/g$. The mainresult of this paper is to determine completely the Hamiltonian stability ofall compact minimal Lagrangian submanifolds embedded in complex hyperquadricswhich are obtained as the images of the Gauss map of homogeneous isoparametrichypersurfaces in the unit spheres, by harmonic analysis on homogeneous spacesand fibrations on homogeneous isoparametric hypersurfaces. In addition, thediscussions on the exceptional Riemannian symmetric space $(E_6, U(1)\cdotSpin(10))$ and the corresponding Gauss image have their own interest.
展开▼
机译:标准单位球面$ S ^ {n + 1}(1)$的任何定向等参超曲面的高斯图的图像是复杂的超二次元Q_n({\ mathbf C})$中的最小拉格朗日子流形。在本文中,我们证明了紧致定向等参超曲面的高斯图像,其在$ S ^ {n + 1}(1)$中具有$ g $明显恒定的主曲率,是具有最小Maslov值$ 2n / g的紧致单调和环状嵌入式Lagrangian子流形。 $。本文的主要目的是通过对均匀空间的谐和分析和均匀等参超曲面上的纤维化来完全确定嵌入在复杂超二次中的所有紧致最小拉格朗日子流形的哈密顿稳定性,这些子超流作为单位球内均匀等参超曲面的高斯图的图像而获得。另外,关于例外黎曼对称空间$(E_6,U(1)\ cdotSpin(10))$和相应的高斯图像的讨论也有其自己的兴趣。
展开▼